Synthesis of Two Isomeric [2.2](2,4)Pyridinophanes 1)

Toshihide KAWASHIMA, * Yukari FUJIMOTO, Yasuo TOHDA, Masahiro ARIGA,
Yutaka MORI, and Soichi MISUMI†

Department of Chemistry, Osaka Kyoiku University, Minamikawabori-cho, Tennoji-ku, Osaka 543

[†]The Institute of Scientific and Industrial Research, Osaka University,
Mihogaoka, Ibaraki 567

Two isomeric [2.2](2,4)pyridinophanes having C_i and C_2 symmetry were synthesized by the thermal sulfur extrusion method from the corresponding disulfones and characterized by their $^1\mathrm{H-NMR}$ spectra.

Since 1933, pyridinophane which incorporates pyridine ring is a familiar heterophane system including widely known muscopyridine. However, a few [2.2](2,4)pyridinophanes containing [2.2]metacyclophane-like framework have been investigated so far, 2 regardless the interesting electronic interaction of the pyridine ring. Here we report the synthesis of two isomeric [2.2](2,4)pyridinophanes, 6 and 7, and their structural characterization.

The thiouronium salt $\underline{3}$ and its precursor $\underline{2}$ were prepared from 2,4-lutidine $\underline{1}$

1708 Chemistry Letters, 1988

as shown in the Scheme. The cyclic disulfides $\underline{\mathbf{4}}$ and $\underline{\mathbf{5}}$ were obtained by a new process, i.e. direct coupling of thiouronium salt $\underline{\mathbf{3}}$ and HCl-salt $\underline{\mathbf{2}}$, because the conventional process using labile free-base of $\underline{\mathbf{2}}$ gave a low yield of the disulfides. After purification by SiO_2 column-chromatography, sulfide $\underline{\mathbf{4}}$ was obtained from the first eluate of 10%EtOH-CHCl $_3$ in 35% yield, and sulfide $\underline{\mathbf{5}}$ from the second eluate in 43% yield($\underline{\mathbf{4}}$: colorless columns from benzene, mp 180.5-181.5°C; $\underline{\mathbf{5}}$: colorless plates from benzene, mp 156.0-157.0°C). This improvement has extended a scope of ring contraction method for preparation of [2.2]phane via cyclic disulfide. Cyclic disulfone given from the sulfide $\underline{\mathbf{4}}$ by $\mathrm{H}_2\mathrm{O}_2$ -acetic acid

treatment was pyrolyzed at 700 $^{\circ}$ C/2 \times 10⁻¹ Torr to afford the target cyclophane, [2.2](2,4)pyridinophane 6 in 10% yield, and from the other disulfide 5 to pyridinophane 7 in 5% yield, respectively (6: colorless columns from petroleum benzine, mp 147.5-149.0 ℃; 7: colorless plates from hexane-benzene, mp 141.0-141.5 °C). The structures of the [2.2]-(2,4)pyridinophanes, 6 and 7, were confirmed with ¹H-NMR spectra. Aromatic inner protons H_8 of $\underline{6}$ (δ 4.38) and $\underline{7}$ (δ 4.35)⁴⁾ reveal marked upfield shift, which indicates that the two pyridine rings of both isomers are fixed in the stepped form just as in [2.2]metacyclophane. Signal of bridge methylene protons of $\underline{6}$ appears as ABCD system , whereas those of 7 two pairs of doublet, as shown in Fig. 1. The fact shows that the compound 6 is evidently C_i isomer of [2.2](2,4)pyridinophane and 7 is C_2 isomer. Further work is in progress.

Fig. 1. 1 H-NMR spectra of $\underline{6}$ and $\underline{7}$ in CDCl₃(360 MHz).

References

- 1) The Chemistry of Constrained Hetero Aromatics. VI.
- 2) T.Kawashima, S.Kurioka, Y.Tohda, M.Ariga, Y.Mori, and S.Misumi, Chem. Lett., 1985, 1289.
- 3) W.W.Paudler and M.D.Bezoari, "Synthesis and Properties of Heterophanes," of "Cyclophane II," ed by P.M.Keehn and S.M.Rosenfeld, Academic Press, New York, N.Y. (1983), p.359.
- 4) δ value in CDCl₃, 360 MHz.

(Received July 13, 1988)